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Making use of digital technologies to evaluate and advance students’ skills and 

competencies has become a hallmark of education in large parts of the world (Curran et al., 

2019; Scherer et al., 2019; Selwyn, 2012). By considering such computer-based technologies, 

educational stakeholders seek to assess and foster relevant competencies in their students in 

order to equip them with a fundamental knowledge base for their further educational trajectory 

and beyond (Buitrago Flórez et al., 2017; Martinez, 2000; Shute & Rahimi, 2017). One particular 

set of competencies that bear crucial relevance for today’s students and are therefore 

comprehensively addressed using digital technologies are 21st century skills, which incorporate a 

range of different skills (Amar & David, 2016; Eguchi, 2016; Lapek, 2017; Mayrath et al., 2012; 

Sanabria & Arámburo-Lizárraga, 2017). One of the arguably most studied 21st century skills are 

Complex Problem Solving (CPS) skills (Ananiadou & Claro, 2009; Geisinger, 2016; Greiff et 

al., 2014). Notably, CPS and intelligence are strongly intertwined (Goode & Beckmann, 2010; 

Stadler et al, 2015). As such, several existing studies have emphasized that the ability to 

successfully solve (complex) problems represents a key aspect of overall intelligence (Beckmann 

& Guthke, 1995; Lotz et al., 2017; Resnick & Glaser, 1976). Additionally, CPS has been found 

to be a significant antecedent of successful performance on educational and work-related 

settings, beyond traditional proxies of intelligence such as reasoning ability (Eseryel et al., 2011; 
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Greiff et al., 2013; Kretzschmar et al., 2016; Mainert et al., 2015; OECD, 2009; 2014; Rohde & 

Thompson, 2007; Wüstenberg et al., 2012). Thus, CPS is a crucial skill to consider in the 

assessment and fostering of students’ competencies in educational settings (e.g., Deary et al., 

2007). 

 Moreover, studies of students’ CPS skills take place at the intersection of intelligence 

and education, two strongly intertwined research fields of equal relevance for effectively 

preparing today’s students for future challenges (Mayer, 2000; Novalinda et al., 2020). 

Therefore, the need to improve scientific knowledge about the underlying key elements of CPS 

success becomes paramount. Extending evidence-based understanding of what differentiates 

success from failure in CPS is particularly important when seeking to identify factors to include 

in computer-based learning simulations aimed at enhancing students’ CPS skills (e.g., Molnár & 

Csapó, 2018). On a broader level, thoroughly investigating the mechanisms that drive CPS 

performance can help us identify beneficial factors for computer-based educational training 

programs targeting students’ broader development in science, technology, engineering, and 

mathematics (STEM) fields as well as related domains sharing underlying characteristics with 

CPS (Murphy et al., 2020; Xie et al., 2015).  

Since the early 21st century, computer-based microworlds have been a promising way to 

capture and assess CPS (Baker & O'Neil Jr., 2002; Wirth & Klieme, 2003). One such approach 

that has been increasingly applied recently is to scrutinize data stored in computer-generated log 

files while problem solvers work on particular problems (Lin et al., 2016; Liu et al., 2018; Ren et 

al., 2019; Teig et al., 2020; Tóth et al., 2017). The unique advantage of log file analysis 

compared to other methods such as verbal protocols is the element of objectivity, since each 
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action by a participant is monitored and stored automatically without the user made explicitly 

aware of these processes (e.g., Adams et al., 2015). Several studies have already utilized log files 

to uncover information about strategies used or time spent on individual or multiple CPS tasks 

(Greiff et al., 2018; Greiff et al., 2016; Greiff et al., 2015; Molnár & Csapó, 2018; Mustafić et 

al., 2019; Sonnleitner et al., 2012; Stadler et al., 2019). However, despite revealing some aspects 

of strategy use in CPS, to the best of our knowledge, research has yet to simultaneously 

scrutinize multiple strategies over multiple tasks in terms of their relationship with CPS 

performance. Hence, the current study takes a pioneering role in performing such an analysis.  

Among CPS strategies assessed in previous research, one strategy known as vary-one-

thing-at-a-time (VOTAT; also referred to as Control of Variables, CVS; e.g., Kuhn & Dean Jr, 

2005), which describes systematically varying only a single variable in order to detect its unique 

effect(s) on the remaining variables (Schwichow et al., 2016; Tschirgi, 1980), has been found to 

be particularly beneficial for solving complex problems. However, we still lack a detailed 

understanding of whether (and, if so, which) additional strategies might also play a (beneficial) 

role in CPS. Existing studies have also yielded limited evidence on how the joint application of 

different strategies is associated with CPS performance across multiple CPS tasks. Answering 

these questions is of particular importance for establishing future training programs to help 

students become better complex problem solvers, which is essential to prepare the current 

generation of students for life in the 21st century (e.g., Greiff & Neubert, 2014). Hence, this 

study examined log files from a large-scale educational dataset of ninth graders solving multiple 

complex problem tasks in order to enrich our understanding of how students approach such 

complex problems and uncover potential differences between successful and unsuccessful 
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problem solvers in strategy use and number of interactions with the computer system across 

multiple CPS tasks with varying characteristics.  

1.1 Complex Problem Solving: Definition, Importance for Education, Assessment  

There are a number of open questions regarding how to prepare students for their future 

educational trajectory and beyond and support them during their educational journey through 

training programs targeting skills that have been shown to be related to educational performance. 

CPS is one such valuable skill. In general, a problem occurs when a desired goal state differs 

from the actual current state (Mayer & Wittrock, 2006). A complex problem, in turn, can be 

characterized as a situation encompassing a number of features, including multiple interrelated 

variables (‘complexity’) with hidden connections (‘intransparency’) that may autonomously 

change over time (‘eigendynamics’; Stadler et al., 2019) and requiring the user to pursue several 

goals simultaneously (‘polytely’; Buchner, 1995; Dörner, 1980).  

The relevance of CPS skills for successful performance on both education and working 

life has been highlighted in existing research. The dynamic nature of a complex problem is of 

particular relevance here, as it mirrors the dynamic, continuously changing environment of the 

21st century (Trilling & Fadel, 2009; Witherington & Boom, 2019), with non-routine tasks 

becoming increasingly significant in various life domains (Marcolin et al., 2019; Reijnders & de 

Vries, 2018). Indeed, CPS skills have shown to be predictive of educational and job-related 

success (Lotz et al., 2016; Mainert et al., 2019; Schweizer et al., 2013; Sonnleitner et al., 2013; 

Wüstenberg et al., 2012). Moreover, CPS assessment was included in the 2012 cycle of the 

Program for International Student Assessment (PISA; termed ‘creative problem solving’ in this 

context; OECD, 2014). As PISA aims to test competencies that are particularly relevant for 



UNSUCCESSFUL AND SUCCESSFUL COMPLEX PROBLEM SOLVERS 5 
 
 

 
 

students’ developmental trajectory (OECD, 2014), including CPS skills in this large-scale 

assessment program serves as another indicator of the widely recognized educational importance 

of these skills. Similarly, previous research has highlighted processes relevant for CPS in 

providing educational scaffolding to students via computer-based programs (Gobert et al., 2012). 

Thus, CPS skills are a prototypical example of competencies for which digital technologies can 

be leveraged to advance education, as they are both trained and evaluated in computer-based 

environments (Kretzschmar & Süß, 2015).  

A broad range of tools exist to assess individuals’ CPS skills (Dörner et al., 1983; Funke, 

2003; Greiff et al., 2013; Greiff et al., 2012; Jonassen, 2011; Sonnleitner et al., 2012). Today, the 

most common such tools are computer-based microworlds encompassing a number of complex 

problem tasks, each with a different set of input variables that can be actively manipulated by the 

participant, affecting several output variables (for an overview of CPS assessment tools, see 

Stadler et al., 2015).  

One commonly used CPS assessment approach in educational and research settings, 

which is also employed in this study, is called MicroDYN (Greiff et al., 2012). MicroDYN is 

part of the minimally complex systems approach family that applies linear structural equations as 

its underlying framework (Funke, 2001; Greiff et al., 2013). This means that assessments based 

on the MicroDYN approach consist of multiple items, each with a clearly defined underlying 

structure of relations between variables. Like other CPS assessment frameworks, MicroDYN 

aims at identifying performance indicators for respective phase of the overall CPS process 

(Beckmann et al., 2017; Fischer et al., 2012). 
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Similar to any type of problem-solving in general, the process of solving a complex 

problem encompasses two distinct phases (Beckmann et al., 2017; Fiore et al., 2002; Funke, 

1993; Purzer et al., 2018; Shute et al., 2016). In the first phase, knowledge acquisition, 

participants are asked to familiarize themselves with the problem space in order to discover the 

underlying variable relationships. Due to the unique initial intransparency of complex problems, 

the solver is required to actively explore the problem space during this phase in order to uncover 

the variable relationships. Subsequently, participants are asked to apply their previously acquired 

knowledge in the knowledge application phase. In order to succeed in this phase, they are 

required to achieve target goal values on certain variables by efficiently manipulating other 

variables within a given number of steps (e.g., Fischer et al., 2012).  

Given the different requirements of the two phases, being able to draw inferences about 

solvers’ performance on each respective phase using fine-grained data sources such as log files 

represents a promising approach to learn more about the underlying indicators of successful vs. 

unsuccessful CPS performance. Such log files, which comprise data about a participant’s 

problem-solving behavior for a given complex problem, are created unobtrusively and stored 

automatically during the problem-solving process. Hence, their analysis represents one way of 

exploring the relations between variables, such as how behavioral patterns when working on the 

tasks and overall performance relate to certain background variables (Angeli et al., 2017; Baker 

& Siemens, 2015). Despite its potential, however, this approach has yet to be fully utilized in the 

field of CPS (see, e.g., Ifenthaler et al., 2018). 

In particular, the information contained in log files encompasses all possible interactions 

by the participant in the computer-based environment, for instance, which input variables they 



UNSUCCESSFUL AND SUCCESSFUL COMPLEX PROBLEM SOLVERS 7 
 
 

 
 

manipulated and when, as well as time spent on each round (i.e., each coherent step evaluating 

the potential impact of certain variables on other variables) and each task, and their score in each 

respective phase. Therefore, in essence, a log file represents a particular participant’s entire 

interaction pattern while working on a given CPS task (e.g., Xu et al., 2018). Previous studies 

have advanced knowledge of the processes underlying CPS by analyzing log file data, such as 

how individual differences in overarching CPS skills relate to the application of specific 

strategies (Lotz et al., 2017) or time on task (Greiff et al., 2016). However, previous research has 

been limited to one or two strategies only (e.g., Greiff et al., 2018), making it impossible to draw 

inferences with regard to other potential strategies or interactions between various strategies. 

Furthermore, even recent studies have focused rather narrowly on a few salient factors, such as 

time between actions (i.e., planning; Eichmann et al., 2019) or performance on a single task (e.g., 

Xu et al., 2018). This illustrates the presence of some significant research gaps despite the large 

body of research on CPS strategies. 

In this study, we aim to extend the CPS literature by analyzing the application rates of all 

possible strategies (see Section 1.2) in multiple CPS tasks of varying difficulty. In our 

investigations, we will focus on successful CPS performance during the knowledge acquisition 

phase, since this phase allows for a greater variety of strategy application given its less stringent 

limitations in terms of time and/or rounds (Fischer et al., 2012). In the analyses, we aim to obtain 

a more comprehensive picture of both the actions and behavioral patterns underlying CPS, with 

the ultimate goal of developing empirically grounded approaches to facilitate computer-based 

CPS in educational settings.  
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1.2 Success and Failure in Complex Problem Solving: What We Do and Do Not Know 

about Strategy Application 

 The skills to solve a complex problem successfully are manifested in different sets of 

planned interventions and variable manipulations (i.e., strategies; Vollmeyer et al., 1996). 

Generally, using a systematic approach, as opposed to a series of random or unplanned 

operations, leads to increased CPS success rates (Lotz et al., 2017).  

Previous research on CPS strategies has uncovered a variety of strategies that are 

potentially beneficial for solving complex problems. The most widely researched strategy is 

termed VOTAT (or CVS; Kuhn & Dean Jr., 2005). In using this strategy, the participant varies 

only one input variable at a time in order to observe its unique effect on one or multiple output 

variables (van der Graaf et al., 2015). The systematic application of VOTAT has been found to 

be a precursor of successful CPS performance in several previous studies (Eichmann et al., 2020; 

Greiff et al., 2015; Herde et al., 2016). In addition, various strategies adjacent to VOTAT exist 

that have not been studied as thoroughly in the past. For instance, the ‘hold-one-thing-at-a-time’ 

(HOTAT) strategy is applied when a participant systematically holds one input variable while 

actively manipulating the remaining input variables (Tschirgi, 1980). While this strategy might 

be beneficial for detecting certain interaction effects of two or more input variables on a given 

output variable, it has generally been treated as not a truly scientific approach, since the 

participant does not analyze the effects of a single variable in isolation, limiting their ability to 

draw inferences about the impact of this single variable (Tschirgi, 1980). Furthermore, the ‘vary-

no-thing-at-a-time’ (NOTAT) strategy refers to non-interfering observation (i.e., an idle round) 

in order to detect possible autonomous changes in the output variables (i.e., eigendynamics). 
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Importantly, NOTAT has been found to lead to higher success rates in solving complex 

problems, but only in cases where it is used to supplement the VOTAT strategy and only when 

eigendynamics are present in a given task (Lotz et al., 2017; Schoppek & Fischer, 2017). Lastly, 

when trying to solve a particular complex problem, participants can apply the ‘change all’ (CA) 

strategy. This strategy refers to manipulating all input variables simultaneously, and has been 

shown in previous studies to be a precursor of failure in both general problem-solving (Tschirgi, 

1980) and CPS (Vollmeyer et al., 1996). To illustrate each strategy, Figure 1 shows their 

application in a sample task with three input variables that can be manipulated.  

Figure 1  

Overview of all possible input variable manipulations (i.e., strategies that can be applied) for a 

given MicroDYN task with three input variables, like the one used in the present study 

 

 

Taken together, the current state of evidence with regard to the underlying actions leading 

to successfully solving a complex problem suggests that (1) particular, specific strategies are 

useful when solving a CPS task (e.g., VOTAT). However, it remains unknown how often related 
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strategies, such as HOTAT or CA, are applied, and if they can also contribute to CPS success 

under certain conditions. Furthermore, (2) some strategies are only beneficial under certain 

conditions (e.g., NOTAT when eigendynamics are present), and (3) there are indications that the 

application of any single strategy is insufficient for successful CPS (see, e.g., Wu & Molnár, 

2021).  

1.3 The Present Study  

Our existing knowledge about strategies as well as the current gaps in the literature had 

the following implications for the present study. First, while the application of a particular 

strategy such as VOTAT improves the success rates for complex problem-solving tasks, 

complementary strategies such as NOTAT, HOTAT, or CA have received little attention in 

research thus far. Consequently, it remains to be investigated which strategy combinations 

significantly alter the chances of CPS success and, more generally, to what extent the 

combination of different strategies acts as a unique precursor of overall CPS performance. 

Second, it has been shown that NOTAT application is beneficial as a complement to VOTAT in 

CPS tasks with eigendynamics (Lotz et al., 2017). However, this finding has yet to be replicated 

with a large comprehensive sample. In sum, these implications led to the following research 

questions (RQs) and joint expectations, which we approached by coding and analyzing log file 

data from a large-scale student sample recording each individual action by participants across 

multiple CPS tasks with varying characteristics:  

RQ 1. What strategies do students use when trying to solve a complex problem, including 

the already well-researched strategy of VOTAT? Given the results of previous research, we 
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expected students to use VOTAT more than any other strategy, followed by CA, NOTAT, and 

HOTAT. 

RQ 2. Is the use of a particular strategy sufficient to successfully solve complex problems 

(i.e., to what extent do the rates of use of individual strategies and combinations of strategies 

play a role in CPS performance)? In particular, we expected that the use of VOTAT would lead 

to higher chances of success than any other single strategy. In addition, we expected that using 

multiple strategies together would significantly improve the chances of successful performance 

compared to using VOTAT alone. 

RQ 3. How does the presence vs. absence of eigendynamics in a given CPS task 

influence CPS performance? In addition, how does the presence vs. absence of eigendynamics 

influence the usefulness of combining strategies? Based on previous research, we expected that 

fewer students would be able to successfully solve CPS tasks with eigendynamics. In addition, 

we investigated whether the presence or absence of eigendynamics modulates the effect of 

specific strategy combinations on successful performance. 

2. Materials and Methods 

2.1 Sample Characteristics  

This study examined a sample of ninth graders from a panel assessment study conducted 

in a Finnish municipality, which aimed to help students develop learning-specific competencies. 

Cohort selection was performed by the municipal school board, with the full grade cohort of 

students attending different schools in the municipality eligible for participation. The panel can 

be seen as representative of the Finnish population with respect to several socioeconomic and 

demographic characteristics (Vainikainen, 2014), thus allowing for generalizable findings. The 
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initial sample size was N = 1,508; 48 percent were female and 50 percent were male (2% missing 

information). The mean age was 15.8 years (SD = 0.43). Informed consent was required from all 

students before participation. After processing the files according to our inclusion and exclusion 

criteria (see Section 2.5.1 for further information), the final sample size used for statistical 

analysis was N = 1,276.  

2.2 Materials 

The present study used the well-established MicroDYN framework (Greiff et al., 2012) to 

assess the students’ CPS performance. MicroDYN inherently captures the two phases, 

knowledge acquisition and knowledge application, in a variety of different made-up contexts 

(i.e., tasks) using arbitrary input and output variable names. This eliminates any influence of 

prior knowledge on a particular topic in order to avoid corresponding bias. In any MicroDYN 

task, the participant initially has the opportunity to freely manipulate one or more input variables, 

displayed on the left side of Figure 2 (‘Rexol’, ‘Menol’, ‘Sarol’), in order to analyze their effects 

on the output variables, ‘Headache’, ‘Diastolic Blood Pressure’, and ‘Antibodies’ in the depicted 

task ‘Medical Aid’. The three cursors for the respective input variables can be moved 

independently of one another, and clicking on ‘Apply’ will result in observable value changes in 

the output variables. In this phase, the problem solver is asked to draw a model of all existing 

relationships between input and output variables in a diagram (see bottom of Figure 2). Note that 

clicking on ‘Apply’ automatically returned all input variable values to their initial ‘neutral’ state 

(as shown in Figure 2), irrespectively of how many variables had been varied and to what extent 

before clicking on ‘Apply’. Afterwards, in the knowledge application phase, the participant 

receives a specific target goal (displayed as individual ranges of values for each output variable, 
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e.g., 66-70 for ‘Antibodies’), which they must achieve in no more than four steps (i.e., by 

clicking on ‘Apply’ a maximum of four times before task termination is enforced by the 

system).  

Figure 2 

Problem space (top) featuring three input variables (left; e.g., ‘Sarol’) and three output 

variables (right; e.g., ‘Headache’), and visual model of variable relationships (bottom) from the 

MicroDYN task “Medical Aid” during the knowledge acquisition phase 

 

2.3 Procedure 

The students were asked to complete a computer-based CPS assessment that took place in 

their school’s computer lab. Overall, the test consisted of nine consecutive MicroDYN tasks, six 

of which were included in the statistical analysis, each taking about five minutes to complete. 

We only included the six tasks with three input variables in the analyses (see Figure 2), as the 
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remaining tasks contained only two input variables, making it impossible to distinguish VOTAT 

from HOTAT. The students had to complete the tasks in a fixed, predefined order of 

appearance.  

First, an example task with instructions involving text and a short video explanation 

about the step-by-step process of solving a MicroDYN task appeared, followed by five tasks that 

did not contain dynamic effects (i.e., eigendynamics). Afterwards, another set of instructions 

including text and a short video was displayed, this time introducing eigendynamics. Of the four 

subsequent tasks, three contained eigendynamics. For each task, in the knowledge acquisition 

phase, participants were allowed to perform an unlimited number of operations within up to 180 

seconds in order to discover relationships between the input and output variables, which they 

then illustrated by drawing arrows on a causal model diagram (see bottom of Figure 2). 

Afterwards, in the knowledge application phase, participants had to use their acquired knowledge 

to achieve certain target goals (i.e., different value ranges for all output variables) in a maximum 

of four steps (after clicking on “Apply” for the fourth time, they received a message that the task 

was terminated, irrespective of whether they had successfully achieved the goal state or not). 

2.4 Variables and Scoring 

All actions performed by each participant for each task were stored in XML files. We 

used a Python script written for this purpose (Van Rossum & Drake, 2009) to code each action 

and score whether the task had been solved correctly or incorrectly (please find the script under 

this link: REF). Participants were scored on their performance in the knowledge acquisition 

phase, meaning that each action performed during this phase was used in the analysis. In 

addition, a dichotomous overall performance rating was applied (success or failure), with a 
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successful answer characterized by drawing a correct model indicating the relationships between 

input and output variables. In turn, any inclusion of incorrect relations and/or omission of correct 

relations was considered a failure. Regarding the individual strategies used, participants were 

able to apply one of four different strategies (see Figure 1) in each respective round: ‘vary-one-

thing-at-a-time’ (VOTAT), ‘hold-one-thing-at-a-time’ (HOTAT), ‘vary-no-thing-at-a-time’ 

(NOTAT), or changing all input variables simultaneously (i.e., CA). Each of these strategies was 

scored on the task level as the absolute frequency with which it was applied for each of the six 

tasks (e.g., if Participant A used HOTAT five times in the first task, they received an absolute 

frequency score of five for HOTAT for this task). Furthermore, we coded how many ‘strategic’ 

actions each participant performed (i.e., how often the participant clicked on apply) and coded 

this as the number of rounds.  

2.5 Statistical Analysis  

2.5.1 Filtering 

The initial dataset was filtered to exclude erroneous data outside the scope of the present 

study. Firstly, we removed all data from participants who did not appear to attempt to explore 

(i.e., completed fewer than three rounds) and who completed more than 60 rounds of a given 

task. Note that this filter only removed items that met the criteria, but we did not perform listwise 

deletion. In total, 2528 items were filtered out. In detail, N = 202 participants did not meet the 

inclusion criteria in all six items and were excluded, while N = 97 participants (7.6%) remained 

with one item in the dataset, N = 90 participants (7.1%) remained with two items, N = 78 

participants (6.1%) remained with three items, N = 103 participants (8.1%) remained with four 

items, N = 134 participants (10.5%) remained with five items, and the majority of N = 774 
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participants (60.6%) remained with six items. In addition, participants who performed at least 

one item twice were excluded, as these were not due to item resumption (picking up where one 

left off), but rather to test reloading (starting over; N = 30, second filter). A sample of N = 1,276 

students was finally included in the following statistical analyses. 

2.5.2 Statistical Analyses 

To determine how often strategies were used by students across all six CPS tasks (RQ1), 

we calculated the mean absolute rates of use for each strategy in each item. In addition, we 

performed a Poisson regression within the Generalized Linear Mixed Models (GLMMs) 

framework with random intercepts for both items and participants and strategy type as fixed 

effect. Since strategy type was categorical, n-1 (i.e., three) dummy coded variables representing 

the presence or absence of each category were built by the statistical program and used as 

separate strategy predictors in the model. The reference category was set to VOTAT and, thus, 

can be considered as a baseline reflected in the general fixed effect (intercept 0). The model is 

depicted in equation (1). 

 

(1) 

In this model, ηpi denotes the logarithm of the Poisson-distributed rate for person p in 

item i , 0 the general fixed effect (intercept) of the model (i.e. VOTAT application), b0p the 

random intercept for participants, b0i the random intercept for items, and 1 to 3 the fixed effects 

of different strategy type (i.e., the application of a certain strategy, compared to VOTAT 

application).  
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In preparation for RQ2 and RQ3, we first calculated the combination of strategies used 

by each participant in each item. This approach scored which strategies were applied but did not 

take into account how often each strategy was used in each item or in which order the strategies 

were applied to reduce complexity of the models. For example, if a participant used VOTAT 

three times, CA once, and HOTAT three times in an item, we coded this as 'VOTAT-HOTAT-

CA' for that item. If a participant used VOTAT ten times in an item, we coded this as 'VOTAT' 

for that item. If a participant only used strategies that were not expected to be useful for solving 

an item, we coded this as "not useful". For example, if a participant used CA ten times and then 

HOTAT three times, we coded this as 'not useful' for that item. Note that we also coded the use 

of NOTAT without the use of VOTAT as 'not useful', as we assumed, based on previous studies, 

that the use of NOTAT without VOTAT would not be useful for solving an item. 

This coding procedure resulted in a categorical variable with nine meaningful strategy 

combinations as factor levels. The absolute frequencies for each item and the marginal 

distributions are shown in Table 1. Note that we excluded the factor level ‘V.H’ (i.e., 

VOTAT+HOTAT) for RQ2 and RQ3 because the corresponding standard error of this estimate 

was unreasonably large (SE = 20.47 for the interaction term in RQ3; see below for the specific 

model), making this estimate difficult to interpret. This was probably due to the fact that HOTAT 

was applied quite rarely compared to the other strategies (see also results of RQ1). We provide 

the analyses for both RQ2 and RQ3 including the factor level ‘V.H’ in the supplementary 

material. Please note that although some numerical differences in the coefficients between the 

models with and without this factor levels have been observed, no differences with regard to the 

main implications of this study have been found. 
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Table 1 

Frequencies of strategy combinations for each item and marginal distributions 

Item V NotUseful V.CA V.H V.H.CA VN V.N.CA V.N.H V.N.H.CA Total 

Aid 377 200 21 20 46 235 3 19 10 931 

Game 626 259 28 48 71 46 2 1 20 1101 

Gardening 351 224 60 44 93 164 33 35 45 1049 

Handball 406 217 24 45 61 228 6 17 10 1014 

Moped 555 283 52 81 113 47 11 9 22 1173 

Spaceship 452 189 4 29 58 206 5 16 10 969 

Total 2767 1372 189 267 442 926 60 97 117 6237 

Note. V = VOTAT; H = HOTAT; N = NOTAT; CA = Change all; NotUseful includes 

applications of NOTAT, HOTAT, CA without application of VOTAT. 

To address RQ2, we used a GLMM based on the 1-parameter logistic item response 

model with both fixed and random effects. Please note that we previously tested for the absence 

of local item dependence of the six items to ensure that the results could be properly interpreted. 

We used Yen's Q statistic (Yen, 1984) and found that no residual correlations exceeded the .20 

cut-off, so local independence was assumed. 

We used the logistic regression shown in equation (2) to address RQ2, with random 

intercepts for both participants and items, and a fixed effect for strategy combinations. Since 

strategy combinations were categorical, n-1 (i.e., seven) dummy coded variables representing the 



UNSUCCESSFUL AND SUCCESSFUL COMPLEX PROBLEM SOLVERS 19 
 
 

 
 

presence or absence of each combination were built by the statistical program and used as 

separate predictors, each representing one strategy combination, in the model. The reference 

category was set to VOTAT and, thus, can be considered as a baseline reflected in the general 

fixed effect (intercept). The model is depicted in equation (2). 

 

with 

X1 = NotUseful 

X2 = V.CA  

X3 =V.H.CA, 

 X4 =V.N, 

X5 =V.N.CA 

X6 =V.N.H 

X7 =V.N.H.CA  

(2) 

In this model, ηpi denotes the logit of successfully solving an item for person p in item i, 

β0 the general fixed effect (intercept) of the model, b0p the random intercept for participants, b0i 

the random intercept for items, β1 to β7 the fixed effects of strategy combinations. Since we used 

VOTAT as the reference, estimates β1 to β7 can be interpreted as an increase or decrease in the 

logit of the probability of solving an item relative to VOTAT use only. That is, a positive 

estimate for an estimate β1 to β7 indicates an increase in the logit of the probability of solving an 

item relative to using VOTAT only, while a negative estimate indicates a decrease in the logit of 
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the probability of solving an item relative to using VOTAT only. We also calculated the 

exponentiated estimates of these estimates, which represent the odds ratios (OR) of the odds for 

applying a strategy combination other than VOTAT usage only divided by VOTAT usage only. 

Hence, OR can be interpreted as an increase (or decrease) of odds of a certain strategy 

combination compared to VOTAT. For instance, if the OR of ‘V.N’ would be 3.2, it would be 

3.2 times more likely to solve an item in the case that VOTAT and NOTAT were applied; 

compared to when VOTAT only was applied. 

To address RQ3, we extended the model depicted in equation (2) by including the 

presence or absence of eigendynamics (ED) in items as a further predictor and added an 

interaction terms between ED and all predictors of different strategy combinations (β1 to β7), 

resulting in seven interactions. The model is shown in equation (3). 

 

with 

X1 = NotUseful 

X2 = V.CA  

X3 =V.H.CA, 

 X4 =V.N, 

X5 =V.N.CA 

X6 =V.N.H 

X7 =V.N.H.CA  

(3) 
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The variable containing the presence vs. absence of eigendynamics was contrast-coded 

with (1 = ED, -1 = noED) to allow for an interpretation of the estimates for the general intercept, 

whereas the estimates for β1 to β7 were comparable to the model depicted in equation (1). For the 

interactions, the estimates (9 to 15) can be interpreted as a moderation of the slope of the 

respective predictors of strategy combinations (β1 to β7) by the presence or absence of 

eigendynamics (8). The exponentiated estimates of the interactions thus represent the change in 

OR (of a certain strategy combination compared to VOTAT usage only) when eigendynamics 

are present vs. when they are not present. Hence, these exponentiated coefficients can be 

interpreted as ratio of OR. A proper interpretation of these interactions thus depends on the 

consideration of the intercept of the models and the coefficients of all predictors involved in this 

interaction (strategy combination and eigendynamics). To facilitate the interpretation, we 

calculated the estimated marginal means for each strategy combination for both levels of 

eigendynamics (presence vs. absence) and observed the predicted probabilities. 

Analyses were conducted using statistical software R (R Core Team, 2020). GLMMs 

were performed with the lme4 package (Bates et al., 2015). Estimated marginal means and 

pairwise comparisons were performed using emmeans (Lenth, 2022). Further R-packages used 

for analyses included easystats (Lüdecke et al., 2022) jmv (Selker et al., 2022), subscore (Dai et 

al., 2022), and jtools (Long, 2022). The R-script containing all statistical analyses reported in this 

manuscript can be found on OSF 

(https://osf.io/gh6qj/?view_only=05875ec7604040a08c3b97653a62b7c9).  

3. Results 

3.1 Which strategies were used how often (RQ1)? 
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Across all items, VOTAT (M = 4.9) was applied most often, followed by CA (M = 1.98), 

NOTAT (M = 1.06), and HOTAT (M = 0.63). Poisson regression revealed that VOTAT was 

applied more often than all other strategies (for more details see Table 2 below).  

Table 2  

Results of Poisson regression 

Predictors Log-Mean IRR p 

(Intercept) 1.34 [1.25, 1.42] 3.81 [3.50, 4.14] <0.001 

V 
Reference 

 

C -0.82 [-0.84, -0.80] 0.44 [0.43, 0.45] <0.001 

H -1.96 [-1.99, -1.93] 0.14 [0.14, 0.15] <0.001 

N -1.45[-1.48, -1.42] 0.23 [0.23, 0.24] <0.001 

Random Effects 
 

Variance Participants 0.35 
 

 
Item 0.01 

 

N Participants 1276 
 

 
Item 6 

 

Observations Total 24948 
 

R² Marginal 0.397 
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Conditional 0.662 

 

Note. V = VOTAT; H = HOTAT; N = NOTAT; CA = Change all. Values in parentheses 

represent bounds of the 95 confidence interval. IRR = Incidence Rate Ratios.  

Post-hoc analyses further revealed that CA was more often applied than HOTAT (ratio 

3.13), CA was more often applied than NOTAT (ratio 1.88), and HOTAT was less applied than 

NOTAT (ratio 0.60; for more details see Table 3).  

Furthermore, we identified overdispersion (dispersion ratio = 5.1, p < 0.01) in the Poisson 

regression, which may affect the estimates and corresponding p-values. To ensure the reliability 

of our analyses, we conducted an observation-level random effects (OLRE) Poisson regression 

(Harrison, 2014). This model demonstrated no overdispersion (dispersion ratio = 0.13, p > 0.05) 

and yielded similar directions of estimates and p-values as the initial Poisson regression with 

overdispersion (including the post-hoc comparisons), which indicates the robustness of the initial 

model. The supplementary material in the OSF repository of this article contains the results of 

the additional OLRE model. 

Table 3  

Post hoc comparisons for frequencies of strategy applications 

Comparison ratio SE Z p 

V / C 2.27 0.02 76.42 < 0.001 

V / H 7.11 0.12 116.07 < 0.001 

V / N 4.27 0.06 106.52 < 0.001 
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C / H 3.13 0.06 62.79 < 0.001 

C / N 1.88 0.03 41.55 < 0.001 

H / N 0.60 0.01 -25.53 < 0.001 

Note: V = VOTAT; H = HOTAT; N = NOTAT; CA = Change all 

3.2 Which strategy combinations were beneficial (RQ2)? 

Results of the GLMM for RQ2 are displayed in Table 4.  

Table 4 

Results of GLMM for RQ2 

Predictors Log-Odds Odds Ratios p 

(Intercept) -0.49 [-2.58 , 1.60] 0.61 [0.08, 4.95] 0.645 

V 
Reference 

NotUseful -4.25 [-4.61, -3.89] 0.01 [0.01, 0.02] <0.001 

V.CA -1.81 [-2.34, -1.28] 0.16 [0.10, 0.28] <0.001 

V.H.CA -3.39 [-3.83, -2.95] 0.03 [0.02, 0.05] <0.001 

V.N 2.24 [1.94, 2.54] 9.42 [6.99, 12.70] <0.001 

V.N.CA 0.56 [-0.35, 1.47] 1.75 [0.70, 4.37] 0.227 

V.N.H 1.91 [1.29, 2.54] 6.76 [3.62, 12.65] <0.001 

V.N.H.CA -0.97 [-1.63, -0.31] 0.38 [0.20, 0.74] 0.004 
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Random Effects 
 

Variance Participants 1.57 
  

 
Item 6.81 

  

N Participants 1272 
  

 
Item 6 

  

Observations 
 

5970 
  

R² Marginal 0.31 
  

 
Conditional 0.80 

  

Note: V = VOTAT; H = HOTAT; N = NOTAT; CA = Change all; AIC = 4112; BIC = 4179 

If non-useful strategies only were employed (i.e., NOTAT, HOTAT or CA only), odds 

ratios were below 1, indicating a disadvantage of an application of these strategies compared to 

VOTAT usage only. Also, the combinations VOTAT + CA (OR = 0.16, p < 0.001), VOTAT + 

HOTAT + CA (OR = 0.03, p < 0.001), and VOTAT + NOTAT + HOTAT + CA (OR = 0.38,  

p = 0.004) were not beneficial, compared to VOTAT usage only. In contrast, the combinations 

VOTAT + NOTAT (OR = 9.42, p < 0.001) and VOTAT + NOTAT + HOTAT (OR = 6.76,  

p < 0.001) were beneficial compared to VOTAT usage only. In more detail, this means it was 

9.42 times more likely to solve an item when VOTAT + NOTAT was applied and 6.76 more 

likely to solve an item when VOTAT + NOTAT + HOTAT were used, compared to VOTAT 

usage only. In addition, it was 1.75 times more likely to solve an item when VOTAT + NOTAT 

+ CA (OR = 1.75, p = 0.227) was applied, although this estimate was not significant and should 

thus be interpreted with caution. 
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3.3 Interaction of strategy combinations and eigendynamics (RQ3)? 

Results of the GLMM for RQ3 are displayed in Table 5.  

Table 5  

Results of GLMM for RQ3 

Predictors Log-Odds Odds Ratios p 

(Intercept) -1.22 [-1.81, -0.63] 0.30 [0.16, 0.53] <0.001 

V 
Reference 

NotUseful -2.88 [-3.55, -2.21] 0.06 [0.03, 0.11] <0.001 

V.CA -1.24 [-2.33, -0.15] 0.29 [0.10, 0.86] 0.026 

V.H.CA -1.75 [-2.41, -1.10] 0.17 [0.09, 0.33] <0.001 

V.N 2.27 [1.91, 2.62] 9.66 [6.77, 13.80] <0.001 

V.N.CA 1.09 [0.19, 1.99] 2.97 [1.21, 7.30] 0.018 

V.N.H 1.88 [1.18, 2.59] 6.57 [3.24, 13.32] <0.001 

V.N.H.CA 0.04 [-0.57, 0.65] 1.04 [0.57, 1.91] 0.897 

ED+ -3.79 [-4.39, -3.18] 0.02 [0.01, 0.04] <0.001 

NotUseful × ED+ 1.92 [1.27, 2.58] 6.85 [3.56, 13.17] <0.001 

V.CA × ED+ 1.06 [-0.03, 2.14] 2.88 [0.97, 8.52] 0.056 
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V.H.CA × ED+ 2.27 [1.64, 2.90] 9.64 [5.13, 18.13] <0.001 

V.N × ED+ 2.35 [2.01, 2.70] 10.54 [7.47, 14.87] <0.001 

V.N.CA × ED+ 2.04 [1.16, 2.92] 7.68 [3.19, 18.51] <0.001 

V.N.H × ED+ 2.54 [1.84, 3.23] 12.62 [6.30, 25.29] <0.001 

V.N.H.CA × ED+ 4.09 [3.48, 4.69] 59.59 [32.59, 108.95] <0.001 

Random Effects 
   

Variance Participants 1.75 
 

 
Item 0.42 

 

N Participants 1272 
 

 
Item 6 

 

Observations 
 

5970 
 

R² Marginal 0.66 
 

 
Conditional 0.80 

 

Note: V = VOTAT; H = HOTAT; N = NOTAT; CA = Change all; ED+ = presence of eigendynamics; AIC = 3741; 

BIC = 3862 

First of all, the model with eigendynamics reduces random item variance (6.81 vs. 0.42). 

Also, the model without eigendynamics fitted worse, compared to the model with eigendynamics 

(χ²(8) = 387, p < .001), which was also indicated by AIC (4112 for the model without 

eigendynamics vs. 3741 for the model with eigendynamics) and BIC (4179 vs. 3862) values.  
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  Results of this model with eigendynamics again revealed that the strategy combinations 

VOTAT + NOTAT (OR = 2.27, p < 0.001), VOTAT + NOTAT + CA (OR = 1.09, p = 0.018), 

VOTAT + NOTAT + HOTAT (OR = 1.88, p < 0.001) were beneficial, compared to VOTAT 

application only. In addition, it was less likely to solve an item if the not useful strategies (i.e., 

NOTAT, HOTAT, CA) only were applied (OR = 0.06, p > 0.001), or the combination of 

VOTAT + CA (OR = 0.29, p > 0.026) or VOTAT + HOTAT + CA (OR = 0.17,  

p > 0.001). These results are in line with the results of the model for RQ2. With regard to the 

direction of effects and significances, the only difference between models was that the strategy 

combination VOTAT+NOTAT+HOTAT+CA (OR = 0.38, p = 0.004) was significantly related to 

a lower chance to solve an item in the model for RQ2, but non-significant in this model for RQ3 

(OR = 1.04, p = 0.897). With regard to eigendynamics, it was less likely to solve an item, if 

eigendynamics were present (OR = 0.02; p < 0.001).  

 The interactions between different strategy combinations and the presence vs. absence of 

eigendynamics were all significant (p < .001 for all), except for VOTAT + CA and ED  

(OR = 2.88, p > 0.056). For the significant interactions, this means that the OR of strategy 

combinations changes, depending on the presence or absence of eigendynamics. To evaluate this 

in more detail, we computed estimated marginal means for strategy combinations while holding 

eigendynamics constant on “present” and “absent”. Results of these analyses are displayed in 

Figure 3. Corresponding pairwise comparisons (with Bonferroni-Holm adjustment) between 

factor levels of eigendynamics (present vs. absent) for each strategy combinations are displayed 

in Table 6. These pairwise comparisons revealed that all strategy combinations significantly 

differed between the presence vs. absence of eigendynamics (all p < 0.001), except for 

VOTAT+NOTAT+HOTAT+CA (Z = -0.80, p = 0.42).  
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Figure 3 

Estimated marginal means to inspect the interaction between strategy combinations and 

eigendynamics 

 

Note. V = VOTAT; H = HOTAT; N = NOTAT; CA = Change all; ED+ = eigendynamics are 

present; ED- = eigendynamics are not present; error bars indicate 95% confidence interval. 

 

Table 6 

Predicted probabilities of strategy combinations when eigendynamics are present vs. absent, and 

corresponding post hoc comparisons  
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predicted probabilties 

posthoc comparisons 

strategy combination ED pred prob SE 
95% CI estimate OR SE z p 

V ED- 0.93 0.03 0.86 0.97 
     

 
ED+ 0.01 0.00 0.00 0.02 7.58 1952.24 0.62 12.29 <0.001 

NotUseful ED- 0.10 0.04 0.05 0.19 
     

 
ED+ 0.00 0.00 0.00 0.01 3.73 41.66 0.80 4.67 <0.001 

V.CA ED- 0.57 0.11 0.35 0.76 
     

 
ED+ 0.01 0.01 0.00 0.05 5.46 235.86 1.20 4.54 <0.001 

V.H.CA ED- 0.19 0.07 0.09 0.35 
     

 
ED+ 0.01 0.01 0.00 0.04 3.04 20.99 0.78 3.89 <0.001 

V.N ED- 0.92 0.03 0.84 0.97 
     

 
ED+ 0.41 0.10 0.24 0.60 2.87 17.59 0.58 4.97 <0.001 

V.N.CA ED- 0.83 0.11 0.51 0.96 
     

 
ED+ 0.13 0.07 0.04 0.34 3.50 33.06 1.00 3.48 <0.001 

V.N.H ED- 0.87 0.08 0.64 0.96 
     

 
ED+ 0.36 0.11 0.17 0.59 2.51 12.26 0.85 2.97 0.01 

V.N.H.CA ED- 0.19 0.08 0.07 0.40 
     

 
ED+ 0.29 0.11 0.13 0.53 -0.60 0.55 0.75 -0.80 0.42 
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Note. V = VOTAT; H = HOTAT; N = NOTAT; CA = Change all; ED+ = eigendynamics are 

present; ED- = eigendynamics are not present. 

4. Discussion 

 The present article sought to uncover the role of different predictors for CPS 

performance. As such, we investigated the individual and combined application of all possible 

strategies on multiple MicroDYN CPS tasks with varying characteristics. Furthermore, the role 

of eigendynamics was analyzed as additional factor regarding strategy application in determining 

CPS performance. The results of our study allow for drawing fine-grained inferences concerning 

which strategy or combination thereof leads to successful vs. unsuccessful CPS performance. 

Overall, several noteworthy strategy combinations were statistically significant for CPS success. 

In addition, the results investigating patterns of strategy use across multiple items with vs. 

without eigendynamics had a number of important implications, which will be discussed below. 

4.1 Strategy Usage Across All Tasks 

With regard to the general application rates of each strategy across all six tasks, VOTAT 

was used the most. Given that this strategy is generally associated with successful performance 

in CPS (e.g., Wüstenberg et al., 2014), it does not come as a surprise that students mostly relied 

on VOTAT for the purpose of detecting the underlying variable relationships within a particular 

CPS task. In addition, NOTAT was used fewer times than VOTAT and CA, but more often than 

HOTAT. Therefore, the results regarding the four possible strategies for solving a complex 

problem in the MicroDYN assessment approach are in line with those already reported in 

previous studies (Greiff et al, 2016; Schoppek & Fischer, 2017). Moreover, these outcomes fully 
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support our initial hypothesis of VOTAT being the most frequently applied strategy, followed by 

CA, NOTAT, and HOTAT.  

Notably, HOTAT had a comparatively low relative frequency compared to VOTAT, 

NOTAT, and CA. This indicates that students understood that HOTAT application does not bear 

any unique benefit within the MicroDYN paradigm, particularly since MicroDYN tasks do not 

feature synergies of two input variables having a unique impact on an output variable. 

4.2 Individual and Joint Strategy Contributions to CPS Performance 

Generally, our results indicate and confirm that applying VOTAT represents a 

cornerstone for CPS success. Furthermore, in line with existing research, exclusively applying 

other strategies was associated with a significantly lower probability of CPS success. Likewise, 

the drawbacks of using either HOTAT or CA alone have been shown in previous studies 

(Tschirgi, 1980, see also Lotz et al., 2017). Also, using VOTAT together with NOTAT or 

HOTAT, or with NOTAT and HOTAT significantly increased the chances of successfully 

solving a CPS task, compared to only applying VOTAT.  

4.3 The Role of Eigendynamics in Strategy Application for CPS Success 

Additionally including the separation between CPS tasks with vs. without eigendynamics 

revealed an even more fine-grained pattern of useful vs. disadvantageous strategy combinations 

in CPS. In general, students were less likely to solve items containing an eigendynamic correctly, 

as compared to ones without eigendynamic. Moreover, simultaneously applying VOTAT and 

NOTAT or VOTAT, NOTAT, and HOTAT or VOTAT, NOTAT, HOTAT, and CA revealed the 

highest predicted probabilities for solving a given CPS item successfully. Given that VOTAT, 

HOTAT, and CA application alone are all insufficient means to detect an eigendynamic, this 
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effect is presumably largely due to the uniquely beneficial nature of NOTAT, which represents 

the sole strategy for uncovering an eigendynamic without possible confounds. This notion was 

also mirrored in the significantly lower predicted probabilities for successful CPS performance 

when students applied strategy combinations without NOTAT in items with eigendynamics. 

4.4 The Importance of Strategy Flexibility for CPS success – Indications of the Relevance 

of Metacognitive Factors  

While VOTAT represents a well-known and important strategy for CPS success, the 

present study has shown that its application alone is insufficient for overarching CPS ability, 

which spans across a multitude of different scenarios, variables, and problem spaces. Therefore, 

the simultaneous application of useful supplementary strategies fosters the probability of 

successful CPS performance. Notably, the results from Figure 3 indicate that VOTAT 

application alone, whereas technically sufficient for solving CPS items without eigendynamics, 

did not lead to flawless CPS performance in said items. Similarly, students were largely unable 

to solve the CPS tasks with eigendynamics despite applying the required strategies, as for 

instance, VOTAT and NOTAT. Thus, it appears that not only the ability to apply a given 

strategy, but also the ability to derive meaningful inferences about the variable relationships 

existing in a given problem environment as a result of one’s strategy application, seems to be 

crucial for CPS success (i.e., being able to integrate the results of a given strategy into and adapt 

one’s mental model of the problem space accordingly; Barrett et al., 2013; Dellaert et al., 2017; 

Funke, 2012; Halasz, & Moran, 1983). Hence, while students may be able to apply a given 

strategy in a matter of “trial-and-error” or “simply following instructions”, the metacognitive 

ability to translate their variable manipulations into a comprehensive problem representation 
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becomes paramount for subsequently not only being able to solve a given, but also other 

complex problems successfully (Krems, 2014; Osman, 2010; Wüstenberg et al., 2014). We will 

further elaborate on this aspect in the subsequent paragraph.  

4.5 Main Implications and Limitations  

 In general, our analyses show that how strategies interact to influence CPS success is 

complex, and that the application of one strategy alone, even VOTAT, does not inherently 

guarantee that a given CPS task will be solved successfully. However, extensively relying on 

other strategies, such as HOTAT and CA, appears to decrease the chances of CPS success. In 

addition, tasks containing eigendynamics are more difficult to solve than the ones with similar 

overall characteristics not possessing this additional feature. With regard to the interactions of 

different strategy combinations and their respective role for CPS performance, it thus appears 

that metacognitive competencies, such as flexible strategy application and adaptation to task 

demands, seem crucial for achieving CPS success, rather than blindly following a single strategy 

(Alexander et al., 2017; Bogard et al., 2013; Dahlberg et al., 2019; Kuhn, 2000; Scherer & 

Tiemann, 2012, 2014; Wüstenberg et al., 2014).  

 On a broader level, our results carry several implications for the use of digital 

technologies in the educational realm. For instance, schools are increasingly relying on 

computer-based learning simulations to equip their students with relevant skills for educational 

success and beyond (Sánchez-Pérez et al., 2018; Tsarava et al., 2017). Ideally, when 

implementing such simulations to foster CPS and other domain-general skills (Gobert et al., 

2012; Lapek, 2017), as well as skills in STEM domains such as mathematics, chemistry, 

medicine, or biology (Aurah et al., 2014; Lavi et al., 2019; Su et al., 2016; Wang et al., 2023), 
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educational institutions should not limit their focus to individual strategies students can apply to 

achieve success. Instead, students’ metacognitive competencies, such as flexibility and 

adaptability in strategy application based on potentially changing task demands (e.g., Gurbin, 

2015), should become a hallmark of computer-based learning simulations for educational 

purposes. In this regard, three potentially promising metacognitive competencies that have been 

shown to be associated with successful performance in CPS and beyond are planning, 

monitoring, and reflecting (De Jong, 2006; McLoughlin & Hollingworth, 2002; Reusser, 1993). 

Previous studies have already demonstrated the importance of deliberately planning one’s next 

variable manipulation (e.g., Eichmann et al., 2019), monitoring one’s progress (e.g., Rudolph et 

al., 2017), and reflecting on one’s CPS performance (e.g., Kauffmann et al., 2008). Likewise, 

these processes have been discovered to be beneficial in fields adjacent to CPS, such as scientific 

inquiry (e.g., Sao Pedro et al., 2013), where similar strategies (i.e., VOTAT) are relevant (e.g., 

Chen & Klahr, 1999). Importantly, these metacognitive facets have also been shown to be 

important for education more broadly, specifically in the natural science domain (e.g., Avargil et 

al., 2018), and even general educational success (Cromley & Kunze, 2020; Zohar & Barzilai, 

2013). 

Importantly, given the importance of metacognition for academic performance (Ohtani & 

Hisasaka, 2018), existing research has called for its greater facilitation in educational contexts 

(e.g., Cornoldi, 2010). Thus, specifically addressing metacognitive competencies in CPS training 

programs would advance not only students’ domain-general CPS skills but also their individual 

toolboxes for achieving educational success across domains.  
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However, fostering such metacognitive competencies in future CPS training programs 

should not replace, but rather complement instruction on the application of specific strategies. In 

this regard, we would like to advocate for the facilitation of two additional strategies apart from 

VOTAT.  

First, in light of the comparatively lower success rates in tasks with eigendynamics, 

NOTAT should be trained explicitly in such programs (Grežo & Sarmány-Schuller, 2021; 

Schoppek & Fischer, 2017). The relevance of NOTAT becomes particularly apparent when 

considering that in real-world scenarios, its application can lead to both beneficial (e.g., a wound 

healing by itself without the side effects associated with taking a drug) and detrimental outcomes 

(e.g., keeping the amount of greenhouse gases constant in the face of climate change). Thus, 

students should be taught the benefits of NOTAT application, ideally by means of computer-

based CPS simulations that closely resemble complex real-world problems. This can additionally 

facilitate students’ understanding of why certain variables contain eigendynamics and others do 

not, for instance by employing assessment approaches such as Tailorshop, which uses ‘real-

world variables’ including ‘production’, ‘demand’, and ‘worker satisfaction’ (e.g., Danner et al., 

2011). It might be easier for students to infer that ‘demand’ fluctuates naturally than to 

understand why ‘Diastolic Blood Pressure’ increases autonomously over time, while ‘Headache’ 

does not decrease automatically over time in MicroDYN (see Figure 2).  

Second, we would like to emphasize the relevance of incorporating an updated version of 

a strategy resembling HOTAT in MicroDYN in upcoming CPS training programs. While this 

idea may seem counterintuitive at first, we have seen that, in a CPS task with three input 

variables, HOTAT essentially involves simultaneously manipulating two input variables in order 
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to detect potential interaction effects. Therefore, in this case, the equivalent of applying HOTAT 

would be to apply a strategy called ‘vary-multiple-things-at-a-time’ (MUTAT). Two (or even 

more) input variables exerting a joint synergetic effect on one or multiple output variables is a 

common feature of real-world scenarios. For instance, sowing seed and subsequently adding both 

water and fertilizer will increase plant growth to a considerably larger extent than just adding 

either one, and exposure to sunlight may further multiply this effect. Therefore, interaction 

effects among input variables should become a part of future CPS training programs. Although it 

would be theoretically possible to incorporate such interaction effects requiring students to apply 

MUTAT (as HOTAT), they have not yet been implemented in MicroDYN, which may be why 

the students in our study used HOTAT seldom despite the importance of investigating potential 

interaction effects between multiple input variables (Funke et al, 2018; Zille et al., 2017).  

Thus, while MicroDYN can be considered largely suitable for teaching the underlying 

strategies and mechanisms of successful CPS under ‘clean’ conditions (e.g., Schoppek & 

Fischer, 2017), it should be complemented by additional assessment approaches that a) feature a 

higher number of input variables, and b) avoid arbitrary labels, such as Tailorshop or related 

approaches (Danner et al., 2011; Stadler et al., 2015). In addition, we simultaneously advocate 

for the inclusion of interaction effects between input variables in MicroDYN in order to better 

highlight such interaction effects. We also recommend extending the set of possible strategies to 

include MUTAT, which can be implemented in tasks containing as few as two input variables, in 

order to evaluate its anticipated beneficial effect. 

Moreover, we would like to highlight the implications of our results for the relationship 

between CPS and intelligence in educational settings. The fine-grained investigation of strategy 



UNSUCCESSFUL AND SUCCESSFUL COMPLEX PROBLEM SOLVERS 38 
 
 

 
 

application as it relates to CPS performance lies at the heart of the present article, and we have 

discussed our findings primarily in relation to their implications for future CPS training 

programs in educational contexts. However, CPS, intelligence, and education are closely linked 

(Greiff et al., 2013; Greiff & Neubert, 2014; Mayer, 2000; Stadler et al., 2015), and it is an 

overarching goal of education to shape and foster students’ intellectual abilities so that they are 

able to successfully deal with the multi-faceted and dynamic demands of 21st-century life 

(Martinez, 2000; Ritchie & Tucker-Drob, 2018). As stated by Martinez (2000), intelligence can 

be defined as “the knowledge, skills, and strategies necessary to be effective in a world that is 

complex and information-rich” (p. 1), thereby building a conceptual bridge to the underlying 

facets of CPS. In this vein, Stadler and colleagues (2015) demonstrated in a meta-analysis that 

CPS substantially correlates with intelligence. Recently, Grežo and Sarmány-Schuller (2021) 

further discovered that the ability to acquire knowledge serves as a partial mediator of the 

relationship between intelligence and CPS performance. Taken together, our study’s outcomes 

have specific implications pertaining to the interplay of CPS and intelligence in education. As 

such, our results based on students’ overall performance on MicroDYN show that, at the age of 

about fifteen, many students have yet to become proficient complex problem solvers. Thus, CPS 

training programs in educational settings are needed to foster students’ awareness and 

application of relevant strategies, including VOTAT, NOTAT, and MUTAT, at particular points 

in time in order to successfully navigate complex environments.  

In closing, we would like to address three limitations of our study. First, we only used 

one specific kind of microworld to assess CPS. As outlined previously, other microworlds exist 

that rely on a higher level of complexity and uncertainty compared to the MicroDYN approach 

(Funke, 2003; Stadler, 2015). However, whereas MicroDYN has been criticized for being a pure 
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VOTAT test (e.g., Dörner & Funke, 2017), this study clearly demonstrates that there is more 

going on with regard to strategy application even in CPS tasks of comparatively low complexity 

such as MicroDYN. Still, given MicroDYN’s aforementioned shortcomings in adequately 

representing all possible strategies for uncovering the underlying variable relationships, 

particularly the underrepresentation of eigendynamics and input variable interaction effects, 

future studies should take an expanded view of strategy application in CPS by utilizing an 

updated version of MicroDYN and/or additional or different CPS assessment approaches. 

Second, this study only analyzed the knowledge acquisition phase, neglecting the knowledge 

application phase. However, given that the knowledge application phase requires students to 

solve a given MicroDYN task in no more than four steps, this phase leaves comparatively little 

room for a rich number of strategy profiles and their respective influences on CPS success. 

Third, while we thoroughly investigated the absolute application rates of each strategy, we were 

unable to make inferences about the individual strategy sequences students pursued. Therefore, 

future research is needed to achieve a more profound understanding of not only how many times 

students apply each strategy or which strategy combinations were applied, but also at which 

point during interaction with a complex problem they decide to stick with one or switch to 

another strategy.  

5. Conclusion 

Today, an increasing number of training programs in educational institutions are 

delivered in the form of computer-based learning simulations targeting both domain-specific as 

well as domain-general skills (Eckhardt et al., 2013; Pedaste & Sarapuu, 2006). Due to their 

indisputable educational relevance, domain-general skills such as CPS are particularly useful 
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showcases for how students approach a given task and which strategy application patterns and 

task characteristics influence successful performance (Gnaldi et al., 2020). In this study, we 

identified which combinations of CPS strategies are associated with an increased vs. decreased 

probability of successful CPS performance. In addition, based on our study’s outcomes, we 

argued for the relevance of metacognitive aspects for CPS success. Consequently, these 

mechanisms should be investigated more thoroughly in upcoming research and should be taken 

into account in future CPS training paradigms in educational settings rather than merely focusing 

on strategy usage and repetitive task completion, as was the case in several previous trainings 

(e.g., Kretzschmar & Süß, 2015). Importantly, training on metacognitive aspects and individual 

strategies such as VOTAT alike can not only pave the way to successfully solving complex 

problems, but also increase students’ chances of success within and beyond the educational 

realm. Therefore, computer-based training and assessment programs in schools should 

incorporate metacognitive aspects, including but not limited to planning, monitoring, and 

reflecting, alongside showing students how to extend their knowledge by means of fine-grained, 

yet universally useful strategies such as VOTAT, NOTAT, and MUTAT. By taking into account 

the relevance of both individual strategies and general metacognitive aspects, computer-based 

educational CPS training programs can help students become better complex problem solvers 

and better overall learners. 
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